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ABSTRACT 15 

Volatile organic compounds (VOCs) are emitted from many sources, including wildland fire; 16 

VOCs have received heightened emphasis due to such gases’ influential role in the atmosphere, as 17 

well as possible health effects.  We have used extractive infrared (IR) spectroscopy on recent 18 

prescribed burns in longleaf pine stands and herein report seminal detection of five compounds 19 

using this technique.  The newly reported IR detections include naphthalene, methyl nitrite, allene, 20 

acrolein and acetaldehyde. We discuss the approaches used for detection, particularly the software 21 

methods needed to fit the analyte and multiple (interfering) spectral components within the 22 

selected spectral micro-window(s). We also discuss the method’s detection limits and individual 23 

species’ context in terms of atmospheric chemistry.   24 
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1. INTRODUCTION  26 

Wildland fire releases significant quantities of trace gases into the environment (Crutzen et al., 27 

1979; Andreae, 1991; Andreae et al., 2001; Akagi et al., 2011; Yokelson et al., 2013), and such 28 

gases can significantly influence atmospheric chemistry (Crutzen et al., 1990). In some parts of 29 

the world, wildfires are becoming more prevalent as well as increasing in impact (Miller et al., 30 

2009; Turetsky et al., 2011). In many areas, however, prescribed burning is used as a preventive 31 

tool to reduce hazardous fuel buildups in an effort to reduce or eliminate the risk of such wildfires 32 

(Fernandes et al., 2003). Understanding the products associated with the burning of biomass has 33 

received considerable attention since the emissions can markedly impact the atmosphere.  Fourier 34 

transform infrared (FTIR) spectroscopy is one technique that has been extensively used to identify 35 

and quantify gases emitted from burns, generally used in either an open path configuration (Burling 36 

et al., 2010; Akagi et al., 2014; Stockwell et al., 2014; Selimovic et al., 2018) or as an extractive 37 

method (Burling et al., 2011; Akagi et al., 2013; Akagi et al., 2014). Extractive systems typically 38 

use a long-path gas cell coupled to an FTIR instrument so as to increase the sensitivity.  Such 39 

approaches have been quite successful; an increasing number of species continue to be identified 40 

and quantified due to the availability of reference gas-phase spectral libraries such as the PNNL 41 

library (Sharpe et al., 2004) or the HITRAN database (Gordon et al., 2017). Such libraries contain 42 

absorption cross-sections that make it possible to obtain quantitative results (i.e. mixing ratios) 43 

without the need for calibration gases.  To the best of our knowledge, the actual list of biomass 44 

burning chemical species measured by FTIR has remained limited to ca. 36 compounds (Table 1); 45 

one goal of our research was to expand the list of chemical species to which infrared methods 46 

could be applied.  All of the compounds detailed in this study have in fact been previously detected 47 

using other analytical methods (Karl et al., 2007; Yokelson et al., 2009; Akagi et al., 2013; Gilman 48 
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et al., 2015; Koss et al., 2018) such as proton-transfer-reaction time-of-flight mass spectrometry 49 

(PTR-ToF) (Koss et al., 2018) or gas chromatography-mass spectrometry (GC-MS) (Gilman et al., 50 

2015), but have not as yet been identified using FTIR in burning investigations. We wished to 51 

determine if such species’ signatures are also found sequestered in the IR spectra associated with 52 

wildland fire, and are thus amenable to IR detection.  A second goal of the present study, whose 53 

biomass burning results are mostly detailed in a separate manuscript, is to better understand 54 

pyrolysis. Every wildland fire consists of two processes: thermal decomposition (pyrolysis) of 55 

solid wildland fuels into gases, tars, and char followed by combustion (oxidation) of the pyrolysis 56 

products resulting in flame gases and particulate matter in the smoke. Description and 57 

measurement (by any means) of the pyrolysis products adjacent to the flames of a wildland fire 58 

has seldom been performed. Non-intrusive measurement of the (pyrolysis) gases in the near-flame 59 

environment is desirable from both a scientific and safety perspective. 60 

The major gas-phase compounds emitted from wildland fires are H2O, CO2, CO and CH4 (Ward 61 

et al., 1991), all of which are easily identified and quantified via FTIR spectroscopy. Lightweight 62 

hydrocarbons, oxygenated hydrocarbons, nitrogen and sulfur species are all minor products that 63 

are also generated during burns (Talbot et al., 1988; Lobert et al., 1991; Yokelson et al., 1996). A 64 

host of more complex gases which can condense to form tar are also produced by pyrolysis of 65 

wildland fuels (Safdari et al., 2018; Amini et al., 2019).  In a gas-phase IR spectrum of such 66 

species, however, the peaks associated with the minor products are often obfuscated by the more 67 

prominent features, such as those from CO2, and can only be recognized in the residual of a 68 

multicomponent simulated fit once the larger features have been removed.  Using data from a 69 

recent field campaign to measure pyrolysis products carried out in a pine forest at Fort Jackson, 70 

South Carolina, we have analyzed some of the IR spectra in more detail to search for the signatures 71 

Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2018-346
Manuscript under review for journal Atmos. Meas. Tech.
Discussion started: 13 November 2018
c© Author(s) 2018. CC BY 4.0 License.



4 

of compounds not found in Table 1. As a partial guide of species for which to investigate, we 72 

searched for those species detected in previous thermogravimetric-FTIR (TG-FTIR) studies 73 

(Bassilakis et al., 2001; Taghizadeh et al., 2015). TG-FTIR experiments, however, are typically 74 

small-scale and carried out in controlled environments (in contrast to ambient conditions of 75 

prescribed burns or large-scale laboratory burns) and thus represent burns with different oxidative 76 

capacities / combustion efficiencies (Yokelson et al., 1996; Fang et al., 2006; Akagi et al., 2014). 77 

In this study, we have chosen to examine field fire spectra for species that can be detected and 78 

quantified via IR spectroscopy both to add to the list of compounds, but also to improve the 79 

characterization (and ultimately the detection limits) of the other species listed in Table 1.  That is 80 

to say, fire IR spectra are very complex and contain many overlapping peaks; the success of the 81 

spectral analysis depends both on the selected spectral region and proper analysis of all compounds 82 

included in the fit to that domain. The chemometric results become more reliable as the signatures 83 

of all relevant species are included in the fit. 84 

Table 1. Compounds previously detected in biomass burning studies using FTIR methods (Yokelson et 85 
al., 1996; Yokelson et al., 1997; Goode et al., 1999; Goode et al., 2000; Christian et al., 2003; Christian et 86 
al., 2004; Karl et al., 2007; Yokelson et al., 2009; Alves et al., 2010; Burling et al., 2010; Burling et al., 87 
2011; Akagi et al., 2013; Akagi et al., 2014; Stockwell et al., 2014; Gilman et al., 2015; Hatch et al., 88 
2017; Selimovic et al., 2018). 89 

Compounds 
CO NO methanol phenol HCOOH 
CO2 NO2 acetic acid furaldehyde peroxyacetyl nitrate** 
CH4 HONO SO2 hydroxyacetone  limonene 
C2H2 NH3 furan 1,3-butadiene carbonyls as glyoxal  
C2H4 HCN H2O acetone HCHO 
C2H6 HCl N2O isoprene 2-methylfuran* 
C3H6 O3** OCS glycolaldehyde MVE (methyl vinyl ether) 
C4H8     

* used in the fit, but not analyzed, ** secondary components found downwind 90 

 91 
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2. EXPERIMENTAL  92 

2.1 Site description and sampling device 93 

In early May 2018 seven prescribed fires were conducted in pine forests at U.S. Army Garrison 94 

Fort Jackson, adjacent to Columbia, South Carolina, at sites not far from previous smoke emission 95 

studies (Akagi et al., 2013; Weise et al., 2015). The forest overstory was primarily longleaf pine 96 

(Pinus palustris Mill.) and slash pine (Pinus elliottii Engelm.), while sparkleberry (Vaccinium 97 

arboreum Marshall) dominated the understory vegetation.  During each burn, pyrolyzed gases 98 

emitted at the base of the flames before ignition were collected using an extractive probe and stored 99 

in 3-liter Summa canisters. This approach was performed to selectively collect pyrolysis gases 100 

prior to the onset of combustion. Details regarding the site description and sampling apparatus will 101 

be provided in a separate paper. 102 

2.2 FTIR Spectrometer 103 

Gases were analyzed in the laboratory (on the same day or the day following the fire) using an 8-104 

meter multipass (White) cell (Bruker Optics, A136/2-L) mounted in the sample compartment of a 105 

Bruker Tensor 37 FTIR. Ten canisters were returned from the field to the laboratory and in turn 106 

connected to the gas cell via 3/8” stainless steel tubing. The tubing and gas cell were both heated 107 

to 70°C to prevent analyte adhesion to the inner surfaces. The White cell (White, 1942) was 108 

equipped with a pressure gauge and temperature probe, both of which were located on the gas 109 

outlet port; the thermocouple wire temperature probe extended into the White cell volume in order 110 

to more accurately measure the gas temperature. Prior to the start of the series of experiments, it 111 

was necessary to calibrate the path length of the variable path gas cell. Measurements of pure 112 

isopropyl alcohol (IPA, Sigma-Aldrich, 99.5%) at ten different pressures were collected and a 113 

Beer’s Law plot was created to determine the length. The IR region from 3515 to 3290 cm–1 was 114 
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integrated (Figure 1a), and the corresponding areas plotted as a function of the IPA pressure 115 

(converted to ppm at 760 Torr)  multiplied by the PNNL reference library (Sharpe et al., 2004) 116 

integration area for a 1 ppm-meter IPA burden (Figure 1b). The slope is equal to the path length, 117 

which was determined to be 8.10 m.   118 

 119 

Figure 1. a) Multiple burden spectra of dry IPA for 10 measurements at varying pressures. The dashed 120 
lines represent the integration limits used for spectral integration. b) Calibration plot with regression line 121 
for IPA measurements. The slope of the line is the path length in meters. 122 

 123 

The White cell contained the analyte smoke for the sample spectrum measurement, but was filled 124 

with ultra-high purity nitrogen gas for the reference spectrum measurement (Johnson et al., 2013).  125 

The FTIR interferometer, detector and sample compartments were purged with dry air from a dry-126 

air generator. The Tensor 37 was equipped with a globar source, a KBr beamsplitter and a 127 

broadband liquid nitrogen cooled mercury cadmium telluride (MCT) detector, providing spectral 128 

coverage from 7,500 to 500 cm–1.  The spectral resolution was 0.6 cm–1 and a 2 mm Jacquinot 129 

aperture was used. The acquisition mode was set to double-sided, forward-backward. For the 130 

Fourier transform, the data were apodized with a Blackman-Harris 3-Term function using a zerofill 131 

factor of 4, and phase corrected via the Mertz (Mertz, 1967) method. 132 

 133 
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2.3 Quantitative Spectral Analysis 134 

The program used for quantitative spectral analysis was MALT5 (Griffith, 2016), which uses both 135 

broadband reference spectra from PNNL (Sharpe et al., 2004; Johnson et al., 2006; Johnson et al., 136 

2009; Profeta et al., 2011; Lindenmaier et al., 2017) and absorption line intensities from HITRAN 137 

(Gordon et al., 2017) (in units of cm–1/( molec × cm–2 ) to iteratively fit a simulated spectrum to 138 

the measured spectrum by optimizing the fit so as to minimize the mean-squared residual, i.e. the 139 

difference between the measured and simulated spectra. Parameters such as path length, resolution, 140 

apodization, temperature, pressure, spectral domain, target compounds / overlapping compounds 141 

are all used as inputs to the spectral fit. During the course of this study, MALT5 was used to 142 

identify five gas-phase species emitted during the burns and quantify the gas mixing ratios via IR 143 

spectroscopy for the first time.  Part of the confirmation strategy is to process the experimental 144 

spectra both with and without the target compound present in the fit and visually inspect the 145 

corresponding residuals.  Table 2 summarizes the IR-active vibrational mode used for each species 146 

in the spectral fit (typically the species’ strongest band in the longwave infrared window), along 147 

with the spectral domain and a list of species with overlapping bands in that domain.   148 

 149 

 150 

 151 

 152 

 153 

 154 
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Table 2. Gas-phase species identified via FTIR, vibrational assignments (Lord et al., 1952; Hollenstein et 155 
al., 1971; Ghosh et al., 1981; Hamada et al., 1985; Es-Sebbar et al., 2014; Chakraborty et al., 2016), and 156 
spectral domains used for spectral fit and quantitation.   157 

2.4 Spectral Resolution  158 

As mentioned in section 2.2, the spectral resolution was set to 0.6 cm–1, which is the highest 159 

resolution obtainable with this instrument.  There are many benefits, but also a few disadvantages 160 

to using higher resolution (Herget et al., 1979). Most importantly, the higher resolution allows one 161 

to resolve the narrow bands of key analytes and discriminate them from lines or bands of 162 

interferents.  For example, in the present study the 782 cm–1 Q-branch of naphthalene was 163 

distinguished from the adjacent absorption lines of C2H2 [Naphthalene’s IR bands and results are 164 

discussed in greater depth in Section 3.1]. If a lower resolution were used, then the deconvolution 165 

of naphthalene from C2H2 would have been compromised, perhaps unfeasible. To demonstrate, 166 

one of the experimental measurements collected at a resolution of 0.6 cm–1 was deresolved to 1, 167 

2, and 4 cm–1 using a Gaussian profile as seen in Figure 2. Those spectra were processed by 168 

MALT5 to check for the presence of naphthalene. Figure 2 displays the measured spectra and the 169 

scaled reference spectra for C2H2 and naphthalene, and the corresponding residuals with and 170 

without naphthalene included in the fit for the a) original spectrum collected at 0.6 cm–1 and the 171 

Target 
compound 

Vibrational bands 
used for analysis 

Spectral 
region (cm–1) Other species fit in the same region 

Naphthalene ν46 at 782.3 cm–1 800–760 C2H2, CO2, HCN and H2O 

Methyl nitrite  ν8 at 841.1(cis) and 
812.3 (trans) cm–1  865–775 C2H2, CO2, HCN, naphthalene, C2H4, 

allene, and H2O  

Allene ν10 at 845.3 cm–1 865–775 C2H2, CO2, HCN, naphthalene, C2H4,  
methyl nitrite, and H2O 

Acrolein ν10 at 1157.7 cm–1 1200–1100 
Acetic acid (CH3COOH),  furfural 
(C4H3OCHO), acetaldehyde , HCOOH, 
CH4, C2H4, and H2O 

Acetaldehyde ν3 at 2716.2 cm–1 2800–2650 CH4, HCHO, C2H2, acrolein, and H2O 
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deresolved spectra at b) 1 cm–1, c) 2 cm–1, and d) 4 cm–1. With the reference spectra for the original 172 

0.6 cm–1 measurement and the 1 cm–1 deresolved spectrum (Figure 2a and b), the absorption lines 173 

for C2H2 and naphthalene overlap, but the 782 cm–1 feature from naphthalene is still slightly visible 174 

in the original spectra. The naphthalene peak appears clearly in the residuals when it is not included 175 

in the fitting process, but is removed from the residual when naphthalene is included in the fit 176 

(discussed further below). As the resolution is reduced (Figures 2c and 2d), however, the features 177 

broaden and the distinction of the naphthalene peak from C2H2 and other minor components (i.e.  178 

CO2, HCN, H2O, spectra not shown) is compromised. The specificity between the compounds is 179 

lost and the confidence in the identification/quantification of the target species, particularly for the 180 

weaker absorbers, diminishes as the resolution decreases. The well-known benefits of using a 181 

lower resolution are that spectra can be acquired more quickly with an improved signal-to-noise 182 

ratio. For the present measurements, 0.6 cm–1 was deemed an appropriate resolution. 183 
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 184 

Figure 2. Measured and scaled reference spectra for C2H2 and naphthalene, and corresponding residuals 185 
with and without naphthalene included in the fit for the a) original spectrum collected at 0.6 cm–1 and the 186 
deresolved spectra at  b) 1 cm–1, c) 2 cm–1, and d) 4 cm–1. The reference spectra for CO2, HCN and H2O are 187 
not shown (HCN was not included in fit when the resolution was 4 cm–1; for resolutions 1, 2 and 4 cm–1, 188 
H2O was not included in the fit when naphthalene was removed from the fit). Spectra are offset for clarity.  189 

2.5 Detection Limits and Signal-to-noise Ratio 190 

The detection limit values presented in this paper are not minimal signal-to-noise limits in the 191 

sense of a minimal spectral signal against a background of purely stochastic noise sources. In such 192 

cases, the noise sources are typically of comparable or higher frequencies than the signal (Johnson 193 

et al., 1991).  Rather, the current limits represent the average detection limits for a spectral residual 194 

derived from a convoluted spectrum arising from a gas mixture of differing and fluctuating 195 

chemical composition. The residuals are due to the least-squares fit of (fluctuations in) the many 196 
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complex features arising from numerous chemicals. That is to say, the residual is not due to just 197 

random instrumental noise, but instead, due to spectral features that can arise in the spectra, e.g. 198 

imperfectly subtracted features from strong absorbers or unidentified absorbers.  For that reason, 199 

we report signal-to-residual, not signal-to-noise detection limits. The detection limits for each 200 

compound in this study were thus derived using a value of three times the root-mean-square (RMS) 201 

value of the residual calculated over the corresponding frequency range (e.g. 800–760 cm–1 was 202 

used for naphthalene). The peak-to-peak noise is more sensitive to fluctuations in the fit with levels 203 

typically 4 to 5× the RMS noise (Griffith et al., 2006).  For the present data, however, the peak-to-204 

peak values ranged from 5 to 10× the RMS noise, thus suggesting the peak-peak values tend to 205 

overstate the tractable noise level, i.e. understate the detection limit. The reported detection limits 206 

are thus presumably higher than what would be estimated with an FTIR in clean air conditions (i.e. 207 

only the analyte and dry air). Based on experience, the limits are typically far higher than what can 208 

be obtained with IR laser sensors where the intrinsically narrow laser linewidths allow for the 209 

probing of individual rotational-vibrational lines without drawing in overlapping spectral lines to 210 

a congested spectral fit (Taubman et al., 2004; Wagner et al., 2011; Phillips et al., 2014). While 211 

typically far more sensitive, such laser measurements can only analyze for one or a few species at 212 

a time, as opposed to the 30+ species seen by the broadband FTIR measurements.   213 

3. RESULTS AND DISCUSSION  214 

When modeling the burning process (Byram, 1959), complete combustion of 1 kg dry wood 215 

produces 1.82 kg CO2 and 0.32 kg H2O for a total mass of products of 2.14 kg.  Incomplete 216 

combustion will yield additional products and less CO2 and H2O while combustion of wet fuels 217 

(Byram, 1959) increases the amount of H2O released.  For infrared analysis of such smoke, much 218 

of the challenge arises due not only to the large mole fractions of H2O and CO2, but the fact that 219 
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both H2O vapor and CO2 have strong features in the mid-IR that can clutter the spectrum rendering 220 

certain spectral regions unusable.  For burning and other atmospheric studies, ideal compounds for 221 

detection via IR spectroscopy will thus have strong absorption coefficients that do not overlap with 222 

the fundamental bands of H2O or CO2, i.e. are in a spectral window or microwindow (Griffith, 223 

1996; Esler et al., 2000; Smith et al., 2011) free of strong interferences. Here, we consider five 224 

such compounds emitted during this prescribed burn, but which had heretofore not been reported 225 

as being detected by FTIR.  Individual compounds are discussed in turn regarding their formation 226 

mechanism(s), detectable IR features and spectral confirmation for this study, along with their 227 

potential fates and atmospheric impacts.  Lastly, the results are briefly compared with literature 228 

values using emission ratios (mixing ratios of analyte to excess CO). 229 

3.1 Naphthalene 230 

Naphthalene (C10H8) is a polycyclic aromatic hydrocarbon (PAH) that is emitted from certain 231 

chemical industries as well as from the combustion of gasoline and oil (Jia et al., 2010).  It is a 232 

condensable hydrocarbon also generated by biomass pyrolysis (Liu et al., 2017). There are a 233 

number of pyrolysis formation routes (Fairburn et al., 1990; Williams et al., 1999; Richter et al., 234 

2000; Lu et al., 2004; Liu et al., 2017). One proposed mechanism is the generation of single ring 235 

aromatic compounds such as benzene, toluene and styrene via Diels-Alder reaction of alkenes; the 236 

single ring aromatic compound then combines with alkenes to form double-ring PAHs, such as 237 

naphthalene (Fairburn et al., 1990).  Naphthalene may even undergo subsequent reactions to form 238 

still larger polyaromatics (Fairburn et al., 1990; Richter et al., 2000). Naphthalene has been 239 

detected (via GC-MS) in tars that were condensed from gas-phase pyrolysis products of both live 240 

and dead southeastern fuels, such as live oak (Quercus virginiana) and swamp bay (Persea 241 

palustris) (Safdari et al., 2018). It has been also detected (Hosseini et al., 2014; Aurell et al., 2017; 242 
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Koss et al., 2018) in the gas-phase in laboratory burning experiments.  The detection of gas-phase 243 

naphthalene from wildland fire emissions is thus not surprising, but this is the first report of its 244 

identification via IR spectroscopy. The best spectral feature for identification and quantification is 245 

the ν46 IR mode near 782.3 cm–1, which corresponds to the H–C–C out-of-plane bend (Chakraborty 246 

et al., 2016). There are other bands at 3067.7 and 3058.0 cm–1 previously assigned to ν29 and ν17, 247 

respectively (Chakraborty et al., 2016).  Both of these modes have smaller absorption coefficients 248 

as compared to ν46, however, and are located in the C–H stretching region, which is common to 249 

nearly all hydrocarbons and thus provides less specificity.  250 

Figure 3 shows a prescribed burn spectrum in the region from 800 to 760 cm–1. The primary 251 

spectral signatures in this plot are those of the R-branch rotational-vibrational lines associated with 252 

the ν5 fundamental (Kabbadj et al., 1991) of C2H2, but there are also absorptions due to CO2, HCN, 253 

H2O (individual spectral contributions not shown) and naphthalene. When all of the spectral 254 

components except for naphthalene are included in the fitting process, the residual (green trace) 255 

displays a prominent feature at 782.3 cm–1, which we ascribe to naphthalene.  When naphthalene 256 

is included in the fit, the feature in question is removed as seen in the black trace of Figure 3.  257 
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 258 

Figure 3. Measured spectrum, scaled reference spectra for C2H2 and naphthalene, and residuals 259 
with and without naphthalene included in the fit.  For clarity, the spectral contributions for CO2, 260 
HCN, and H2O are not shown. All spectra are at 0.6 cm–1 resolution and have been offset. The 261 
calculated mixing ratio of naphthalene in this measured spectrum is 16.4 ± 0.6 ppm (values obtained 262 
from MALT5 software, and error represents standard error). 263 
 264 
 265 

Table 3 presents the range of measured mixing ratios for naphthalene along with averaged 266 

detection limits for the 10 measurements collected during the prescribed burns as well as for the 267 

other four reported compounds. In the measurements, naphthalene’s mixing ratios ranged from 1.4 268 

to 19.9 ppm, and the averaged RMS-derived detection limit was 1.6 ± 0.5 ppm; different detection 269 

limits were observed for each spectrum. One of the measurements had a mixing ratio of 2.9 ppm, 270 

yet its RMS-derived detection limit was 3.7 ppm, and is thus below the estimated detection limit 271 

(bdl).  272 

 273 
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Table 3. Calculated mixing ratios for ten canister FTIR measurements along with average estimated 275 
residual detection limits for the target compounds derived using 3 times the root-mean-square of the 276 
residual. Error bars represent the standard deviation (1σ) of the mean. 277 

Target compound 

Calculated mixing ratios (ppm) Averaged detection 
limit (ppm) using 
root-mean-square 

(RMS) value of the 
residual 

Min Max Average 

Naphthalene* 1.4 19.9 8.5 ± 2.1 1.9 ± 0.5 
Methyl nitrite* 2.3 21.0 8.7 ± 2.4 2.2 ± 0.4 
Allene 2.2 37.8       13.1 ± 3.6 3.0 ± 0.6 
Acrolein    14.7        125.7          43 ± 12 6.1 ± 1.5 
Acetaldehyde    34.5        264.8        103 ± 27           11.7 ± 3.2 

*One measurement was below the detection limit. 278 
 279 

Naphthalene emitted from prescribed burns is thus clearly detectable using IR spectroscopy. The 280 

U.S. Environmental Protection Agency considers naphthalene a potential human carcinogen and a 281 

hazardous air pollutant (U.S. EPA). Once released, naphthalene may cycle in the atmosphere or 282 

accumulate in aquatic and terrestrial systems via wet/dry deposition or air-water gas exchange 283 

(Park et al., 2001). Gas-phase naphthalene’s primary atmospheric loss mechanism is its reaction 284 

with the hydroxyl radical (OH) to form hydroxy-PAHs or nitro-PAHs in the presences of nitrogen 285 

oxides (Vione et al., 2004).  The estimated atmospheric lifetime of naphthalene for reaction with 286 

OH is 6.8 hours (based on a 12-hour daytime OH level of 1.9 × 106 molecules cm–3) (Arey, 1998).   287 

3.2 Methyl Nitrite 288 

A second compound detected for the first time in the wildland fire IR spectra was methyl nitrite 289 

(CH3ON=O).  Methyl nitrite has previously been observed in aged cigarette smoke (Schmeltz et 290 

al., 1977), and also the exhaust of engines fueled by methanol–diesel blends (Jonsson et al., 1982). 291 

It has also been observed as a minor product for the thermal decomposition of both nitrate esters 292 

(Boschan et al., 1955) and isopropyl nitrate at low temperatures and pressures (Griffiths et al., 293 

1975). Methyl nitrite has also been detected in wildland fire emissions by GC-MS (Gilman et al., 294 
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2015). Moreover, it has been observed that some nitrogen-containing organic compounds such as 295 

acetonitrile (CH3CN) and acrylonitrile (CH2=CHCN) emitted from burns were directly correlated 296 

to the fuel nitrogen content. However, methyl nitrite [and another oxygenated nitrogen organic 297 

compound, isocyanic acid (HNCO)] did not show any significant dependency on fuel N-content 298 

(Coggon et al., 2016). It has been suggested that methyl nitrite is only a minor direct product of 299 

combustion (Finlayson-Pitts et al., 1992),  but instead is generated in situ by the secondary reaction 300 

of methanol (CH3OH) with nitrogen dioxide (NO2).  301 

We also note that methyl nitrite is an oxidizing agent and is used as a rocket propellant. It is thus 302 

plausible that the methyl nitrite detected in the present study was not a product of the fire, but 303 

emanated from munitions used in training at Ft. Jackson. However, while the records of the 304 

munitions used were not complete, a survey of these records did not indicate the use of methyl 305 

nitrite in any munitions at the Ft. Jackson plots where the present burn samples were collected.   306 

With regards to the IR spectra, methyl nitrite exists in equilibrium as a mixture of two conformers- 307 

cis and trans; at room temperature (25°C) it is estimated as 58% cis and 42% trans (Bodenbinder 308 

et al., 1994). We were able to use the same band associated with both conformers, namely the ν8 309 

band, which is at 841.1 cm–1 for the cis conformer and at 812.4 cm–1 for the trans conformer 310 

(Ghosh et al., 1981). The ν8 mode is associated with the N–O stretch and is very strong for both 311 

conformers (Ghosh et al., 1981). We note that methyl nitrite also has very strong bands at 627.8 312 

cm–1 (cis) for ν9 ONO bending, as well as at 1620.1 cm–1 (cis) and 1677.4 cm–1 (trans) due to the 313 

ν3 N=O stretch (Ghosh et al., 1981). These bands, however, are of lesser utility for IR detection: 314 

The ν9 peak is masked by CO2 bending mode lines, and the ν3 peak is obfuscated by the H2O 315 

bending mode lines.  316 
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The spectral region used for evaluation was 865–775 cm–1, which contains the ν8 band for both the 317 

cis and trans conformers (Ghosh et al., 1981).  Figure 4 shows the experimental spectrum from 318 

the prescribed burn, along with the scaled reference spectra for the two major compounds used in 319 

the fit: C2H2 and methyl nitrite. While important, other minor compounds, such as CO2, HCN, 320 

naphthalene, C2H4, allene, and H2O, were also included in the analysis, but their spectral 321 

contributions are not plotted. Additionally, Figure 4 displays the residuals both when methyl nitrite 322 

was included in the fitting process and when it was excluded. Upon inspection of the residual 323 

spectrum where it was excluded (green trace), it is clear that both the cis and trans features from 324 

ν8 are present and this confirms methyl nitrite in the pyrolysis smoke 325 

 326 
 327 

Figure 4. Measured experimental spectrum and the individual spectral contributions for the major 328 
components (C2H2 and methyl nitrite) and residuals with and without methyl nitrite included in the fit. For 329 
clarity, the spectral contributions for CO2, HCN, naphthalene, C2H4, allene, and H2O are not shown. All 330 
spectra are at 0.6 cm–1 resolution and have been offset for clarity. The calculated mixing ratio of methyl 331 
nitrite in this measured spectrum is 21.0 ± 0.1 ppm (values obtained from MALT5 software, and error 332 
represents standard error). 333 
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The mixing ratio and RMS-derived detection limit for methyl nitrite for the displayed experimental 334 

spectrum in Figure 4 are 21.0 ppm and 1.4 ppm, respectively. The range for the mixing ratios and 335 

the averaged detection limits for methyl nitrite are summarized in Table 3.  Methyl nitrite was 336 

detected with confidence in 9 of the 10 measurements; only one of the measurements was below 337 

the RMS-derived detection limit. 338 

We report the detection via IR spectroscopy of methyl nitrite in wildland fire emissions not only 339 

because it is novel, but also because of its influential role in atmospheric chemistry:   Methyl nitrite 340 

is a photochemical source of OH. In the atmosphere it undergoes photolysis to form the methoxy 341 

radical (CH3O) and nitric oxide (NO) with a quantum yield near unity (Cox et al., 1980). At solar 342 

noon, the photolytic lifetime is only 10–15 min (Seinfeld et al., 2012). The photogenerated 343 

methoxy radical then undergoes subsequent reactions leading to the formation of OH. In turn, both 344 

OH and NO contribute to the production of ozone (Finlayson-Pitts et al., 1999). 345 

3.3 Allene 346 

Allene (1,2-propadiene, CH2=C=CH2) is of high symmetry (D2d) and has the two methylene 347 

groups with their H–C–H planes at right angles to each other (Lord et al., 1952). The compound 348 

has previously been detected in biomass burning grab samples using GC (Akagi et al., 2013). 349 

Allene is a proposed precursor in the burning process that contributes to the formation of both 350 

aromatic compounds and soot (Frenklach et al., 1983; Frenklach et al., 1988). Lifshitz et al. have 351 

observed (at temperatures ranging from 757–847°C) that the structural isomerization of allene and 352 

propyne (CH2=C=CH2 ↔ CH3–C≡CH) will take place via a unimolecular reaction faster than the 353 

decomposition reaction (Lifshitz et al., 1975). Additionally, these same authors investigated the 354 

pyrolysis of allene and propyne and observed that C2H4 was generated from allene while CH4 and 355 

C2H2 were mainly formed from propyne (Lifshitz et al., 1976). Unfortunately, the strongest IR 356 
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band for propyne (near 634 cm–1) is obscured by CO2 bending mode lines.  Due to the interferences 357 

we cannot with confidence identify propyne in the measurements; we can, however, detect allene.  358 

In the mid-IR, allene has several strong rotational-vibrational lines near 845 cm–1 associated with 359 

the sub-bands of the perpendicular band ν10, which is due to CH2 rocking (Lord et al., 1952). 360 

Additionally, allene has a moderately strong band at 1958.6 cm–1 due to the ν6 C–C stretching 361 

(Lord et al., 1952). However, the ν6 band is not useful for detection due to interference from the 362 

H2O bending mode lines.  363 

  364 
Figure 5. Measured absorbance spectrum and residual with and without allene included in the fit, along 365 
with the scaled reference spectrum for allene. For clarity, the spectral contributions for C2H2, CO2, HCN, 366 
naphthalene, C2H4, methyl nitrite, and H2O are not shown. All spectra are at 0.6 cm–1 resolution and have 367 
been offset for clarity. The calculated mixing ratio of allene in this measured spectrum is 37.8 ± 0.6 ppm 368 
(values obtained from MALT5 software, and error represents standard error). 369 
 370 

Figure 5 shows the measured absorbance spectrum, scaled allene reference spectrum and the 371 

associated residual with and without allene included in the fit.  The absorption lines associated 372 

with allene are clearly seen in the resulting spectrum when allene is not included in the fit (green 373 
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trace), thus confirming that allene is one of the primary components contributing to the features in 374 

this spectral domain. For the experimental spectrum displayed in Figure 5, the calculated mixing 375 

ratio for allene is 37.8 ppm and the RMS-derived detection limit is 5.4 ppm.  376 

 377 

Unlike naphthalene and methyl nitrite, allene is not considered a hazardous air pollutant nor is it a 378 

photochemical source of OH. Major loss processes for alkenes include reactions with OH, NO3 379 

radical and O3 (Atkinson et al., 2003).  Specifically for allene, the lifetime (calculated from rate 380 

constants from Atkinson et al., 2003, and based on a 12-hour daytime OH level of 1.9 × 106 381 

molecules cm–3 and 24-hour O3 average of 7 × 1011 molecules cm–3) with respect to OH and O3 382 

reactions are 1.2 and 89.4 days, respectively. The reaction between OH and allene involves the 383 

initial addition of OH to one of the C=C bonds generating a hydroxyalkyl radical, which then may 384 

undergo subsequent reactions (i.e. reaction with O2 forming hydroxyalkyl peroxy radical) 385 

contributing to the propagation of radicals in the atmosphere (Atkinson et al., 2003; Daranlot et 386 

al., 2012).  387 

 388 

3.4 Acrolein and Acetaldehyde 389 

The two aldehydes, acrolein (CH2=CHCHO) and acetaldehyde (CH3CHO), have also been 390 

identified in the burning IR spectra. It has been proposed that both acrolein and acetaldehyde are 391 

formed from the pyrolysis of cellulose (a major constituent of biomass) via the intermediate 392 

glycerol, which is a moiety in the structure of levoglucosan, a known pyrolysis product of cellulose 393 

(Stein et al., 1983). Stein et al. observed that acrolein, acetaldehyde and CO were the initial 394 

decomposition products for the pyrolysis of glycerol (Stein et al., 1983).  Both of these compounds 395 
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have been detected in previous wildland fires studies via methods such as GC (Akagi et al., 2013) 396 

or PTR-ToF (Brilli et al., 2014; Koss et al., 2018), but have not yet been identified via IR.  397 

Acrolein, the simplest unsaturated carbonyl, exists in two forms,  s-cis and s-trans,  with s-trans 398 

being the more stable, and consequently the more abundant conformer (Wagner et al., 1957). It 399 

has been estimated that the fractions of s-cis and s-trans are about 4 and 96% at 20°C, and 7 and 400 

93% at 100°C, respectively (Alves et al., 1971). The largest IR feature for acrolein is the ν5 C=O 401 

stretch (Hamada et al., 1985) at 1724.1 cm–1, but this band is heavily overlapped by water lines. 402 

There is also the ν16 band (Hamada et al., 1985) at 958.8 cm–1, but this feature  overlaps with 403 

multiple other strongly absorbing compounds, such as C2H4. We have therefore focused acrolein’s 404 

analysis using the ν10 band (C–C stretch) (Hamada et al., 1985) at 1157.7 cm–1. 405 

 406 

Figure 6 displays the very congested biomass burning spectrum with individual contributions for 407 

several species included in the fit [contributions for furfural (C4H3OCHO), acetaldehyde, CH4, and 408 

C2H4 are included, but not plotted] as well as the residual with and without acrolein included in 409 

the fitting process. When acrolein is not included in the fit, features (both near 1168 and at 1157.7 410 

cm–1) that resemble acrolein are observed in the residual spectrum as seen in the green trace in 411 

Figure 6. When acrolein is included in the fit, the features in question are removed. For acrolein, 412 

no mixing ratios were observed below the RMS-derived detection limits.  413 
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 414 
Figure 6. Measured spectrum and the individual spectral contributions for the major components and 415 
associated residual with and without acrolein included in the fit. For clarity, the spectral contributions for 416 
furfural (C4H3OCHO), acetaldehyde, CH4, and C2H4 are not shown. All spectra are at 0.6 cm–1 417 
resolution and have been offset for clarity. The calculated mixing ratio of acrolein in this measured spectrum 418 
is 99.9 ± 3.0 ppm (values obtained from MALT5 software, and error represents standard error). 419 
 420 
Similar to acrolein, acetaldehyde has its strongest IR feature due to the C=O stretch (Hollenstein 421 

et al., 1971), with ν4 found at 1746.1 cm–1. Again, due to the presence of water lines in the 422 

spectrum, this features is not practical for detection. The  aldehyde ν3 C–H stretching  band 423 

(Hollenstein et al., 1971) at 2716.2 cm–1 was instead used for analysis. Figure 7 shows the 424 

measured and fitted spectra as well as the spectral contributions of the major individual 425 

components used to calculate the fitted spectrum and the corresponding residual.  Other minor 426 
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components, such as acrolein, C2H2 and H2O, were also included in the fit, but their reference 427 

spectra are not displayed in Figure 7. The spectral profile of acetaldehyde with its P and R branches 428 

of ν3 is easily discernable even before deconvolution of the measured spectrum.  Similar to 429 

acrolein, all of the mixing ratios for acetaldehyde were above the RMS-derived detection limit.  430 

 431 

 432 
Figure 7. Measured and fitted spectra as well as the individual components (for clarity, the spectral 433 
contributions for acrolein, C2H2, H2O are not shown) and associated residual in the spectral region 2800-434 
2650 cm–1. All spectra are at 0.6 cm–1 resolution and have been offset for clarity. The calculated mixing 435 
ratio of acetaldehyde in this measured spectrum is 252.8 ± 5.5 ppm (values obtained from MALT5 software, 436 
and error represents standard error). 437 
 438 
Similar to naphthalene, the U.S. EPA considers both acrolein and acetaldehyde to be hazardous 439 

air pollutants (U.S. EPA). Acrolein is toxic to humans, and when inhaled may cause upper 440 

respiratory irritation. Acetaldehyde will irritate the eyes, skin and the respiratory tract and is 441 
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considered a potential human carcinogen (U.S. EPA). Once released into atmosphere, such 442 

aldehydes can either react with O3 or OH, or undergo photolysis (Seinfeld et al., 2012). For 443 

acrolein, OH reaction is the major loss process with a lifetime of 2.4 hours based on a 12-hour 444 

daytime OH level of 1.9 × 106 molecules cm–3, (Gierczak et al., 1997) forming products such as 445 

CO, CO2, HCHO, glycolaldehyde (Johnson et al., 2013) and acryloylperoxynitrate (APAN) 446 

(Orlando et al., 2002).  Similarly, acetaldehyde’s lifetime is dominated by OH loss, and that 447 

reaction generates HCHO and CO as well as peroxyacetylnitrate (PAN) (D'Anna et al., 2003). 448 

Acetaldehyde’s estimated tropospheric lifetimes with respect to OH reaction and photolysis are 10 449 

hours (Atkinson et al., 2003) and 5 days (Seinfeld et al., 2012), respectively. 450 

3.5 Comparison to Other Measurements 451 

Preliminary emission ratios (relative to CO) for the reported compounds are compared to those 452 

reported in previous wildland burning investigations:  Table 4 displays the average emission ratios 453 

and the standard deviations (1σ) for this study as well as emission ratios reported by Koss et al. 454 

(2018), Ferek et al. (1998),  Brilli et al. (2014), and Gilman et al. (2015). As shown in the table, 455 

there is significant variation between the studies due to multiple factors such as different fuel types, 456 

analytical methods, sampling approaches and experimental conditions. For example, the study by 457 

Ferek et al. (1998) focused on the collection of airborne samples, while Brilli et al. (2014) 458 

measured gases under nocturnal conditions using a ground-based system. Inspection of the table 459 

shows that the measured emission ratio values are not unprecedented, but are within range of 460 

previous measurements.   Because they have the same molar mass, the mass spectrometric 461 

techniques in some cases cannot distinguish allene from propyne.  462 

 463 
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Table 4.  Emission ratios relative to CO and standard deviations (1σ) for the present study and for 464 
three other previously published biomass burning studies.  465 

Target 
compounds 

Present 
average 
emission 
ratios to 
CO 
(ppb/ppm) 

Koss et al. 
(2018) fire-
integrated 
emission 
ratio to 
CO 
(ppb/ppm) 

Ferek et 
al. (1998) 
emission 
ratio to 
CO 
(ppb/ppm) 

Brilli et al. 
(2014) 
emission 
ratios to 
CO 
(ppb/ppm) 

Gilman  et al. (2015) discrete 
emission ratios to CO (ppb/ppm) 
South-
western 
fuels 

South-
eastern 
fuels  

Northern 
fuels 

Method FTIR PTR-ToF-
MS 

GC-FID* PTR-ToF-
MS GC-MS GC-MS GC-MS 

Naphthalene 0.79 (0.47) 0.20 (0.16) n/a n/a 
0.0070 
(0.0048) 

0.0040 
(0.0050)  

0.022 
(0.012) 

Methyl nitrite 0.94 (0.85) n/a n/a n/a 
0.9 
(1.1) 

0.52 
(0.51) 

0.76 
(0.90) 

Acrolein 4.0 (1.8) 5.4 (3.0) n/a 3.14 (0.12) 
0.82 
(0.68) 

1.31 
(0.88) 

3.5  
(1.7) 

Acetaldehyde 9.4 (3.6) 7.4 (5.2) n/a 37.3 (1.4) 
1.6 
(1.2) 

2.8  
(1.8) 

5.5 
(3.6) 

Allene 
(Propadiene)** 1.05 (0.24) n/a 0.1 (0.1) 8.73 (0.28) n/a n/a n/a 

*GC-FID is gas chromatography with flame ionization detector 466 
**Brilli et al. (2014) use both 1-propyne and propadiene to represent C3H4.  Gilman et al. (2015) report emission 467 
ratios for propyne, but not allene. 468 
 469 

4. SUMMARY 470 

Gas-phase compounds with appreciable band intensities and appreciable concentrations can be 471 

both identified and quantified using IR spectroscopy.  We have used such spectral information for 472 

seminal IR detection of five compounds generated during prescribed forest fire burns.  Deriving 473 

the mixing ratios from the congested spectra obtained from wildland smoke samples is more 474 

challenging due to the multiple overlapping spectral features:  Sophisticated software and analysis 475 

are required in carefully selected spectral windows. We have reported seminal IR detection of five 476 

molecules that had previously not been observed by FTIR in ambient measurements of wildland 477 

emissions. Most of the compounds (excluding acetaldehyde), had their primary features become 478 

apparent only after the larger spectral features had been fitted and subtracted. 479 

 480 

 481 
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